Как работает оперативная память? ОЗУ - что это такое и как работает? Оперативная память используется для.

19.07.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Оперативное запоминающее устройство, или оперативная память, – это массив кристаллических ячеек, способных хранить данные. Ее основная особенность заключена в том, что хранение информации в ней осуществляется только до тех пор, пока компьютер включен. При выключении компьютера, вся хранимая информация сразу же удаляется без возможности восстановления. По способу хранения информации оперативная память делится на статическую (SRAM – Static RAM) и динамическую (DRAM – Dynamic RAM).

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (кэш-памяти), предназначенной для оптимизации работы процессора.

Оперативная память в компьютере размещается на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Если к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам.

Постоянное запоминающее устройство (пзу)

В момент включения компьютера в его оперативной памяти нет ничего – ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения.

Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес. Это происходит аппаратно, без участия программ (всегда одинаково). Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам.

Этот исходный адрес не может указывать на оперативную память, в которой пока ничего нет. Он указывает на другой тип памяти – постоянное запоминающее устройство (ПЗУ). Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют «зашитыми» – их записывают туда на этапе изготовления микросхемы.

Комплект программ, находящихся в ПЗУ, образует базовую систему ввода-вывода (BIOS – Basic Input Output System). Основное назначение программ этого пакета состоит в том, чтобы проверить состав и работоспособность компьютера и обеспечить взаимодействие с клавиатурой, монитором, жестким диском и дисководом гибких дисков. Программы, входящие в BIOS, позволяют нам наблюдать на экране диагностические сообщения, сопровождающие запуск компьютера, а также вмешиваться в ход запуска с помощью клавиатуры.

Работа таких стандартных устройств, как клавиатура, может обслуживаться программами, входящими в BIOS, но такими средствами нельзя обеспечить работу со всеми возможными устройствами. Так, например, изготовители BIOS абсолютно ничего не знают о параметрах наших жестких и гибких дисков, им не известны ни состав, ни свойства произвольной вычислительной системы. Для того чтобы начать работу с другим оборудованием, программы, входящие в состав BIOS, должны знать, где можно найти нужные параметры. По очевидным причинам их нельзя хранить ни в оперативной памяти, ни в постоянном запоминающем устройстве.

Специально для этого на материнской плате есть микросхема «энергонезависимой памяти», по технологии изготовления называемая CMOS (complementary metaloxide semiconductor). От оперативной памяти она отличается тем, что ее содержимое не стирается во время выключения компьютера, а от ПЗУ тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав Системы. Эта микросхема постоянно подпитывается от небольшой батарейки, расположенной на материнской плате. Заряда этой батарейки хватает на то, Чтобы микросхема не теряла данные, даже если компьютер не будут включать несколько лет.

В микросхеме CMOS хранятся данные о гибких и жестких дисках, о процессоре, о некоторых других устройствах материнской платы. Тот факт, что компьютер четко отслеживает время и календарь (даже и в выключенном состоянии), тоже связан с тем, что показания системных часов постоянно хранятся (и изменяются) в CMOS.

Таким образом, программы, записанные в BIOS, считывают данные о составе оборудования компьютера из микросхемы CMOS, после чего они могут выполнить обращение к жесткому диску, а в случае необходимости и к гибкому, и передать управление тем программам, которые там записаны.

Оперативная память

Наименование параметра Значение
Тема статьи: Оперативная память
Рубрика (тематическая категория) Информатика

Назначение и основные представления о работе функциональных блоков компьютера

Запоминающее устройство (ЗУ) - ϶ᴛᴏ один из базовых функциональных узлов любого компьютера.

В современных компьютерах ЗУ представлено двумя видами памяти:

- о с н о в н о й (оперативной ) памятью (ОП),

- в н е ш н е й (ВП).

Оперативная память предназначена для хранения текущей информации . В ней хранятся всœе служебные и прикладные программы, обслуживающие вычислительный процесс, исходные, промежуточные данные и результат вычислений.

Оперативная память энергозависима. Это значит, что при отключении энергопитания компьютера вся информация в оперативной памяти теряется.

Эта память представлена множеством микросхем (БИС), в которых расположено большое количество двухпозиционных элементов (триггеров ), исчисляемое десятками и сотнями миллионов. Двухпозиционный элемент - это элемент, который может находиться только в одном из двух возможных состояний. Это базовый элемент всœех современных компьютеров. Условились одно состояние элемента обозначать как ʼʼ0ʼʼ, а другое как ʼʼ1ʼʼ. Такие элементы очень надежны и просты в реализации. С помощью двухпозиционных элементов представляется вся информация в компьютере. В этом случае любая информация текстовая или числовая изображается в виде комбинаций ʼʼ0ʼʼ и ʼʼ1ʼʼ, то есть кодируется или, как еще говорят, представляется в машинных кодах. Этот код еще называют двоичным кодом, поскольку в нем используется два символа.

Любая информация имеет размер или свое количество, то есть ее должна быть мало или много. Чтобы измерять информацию, была принята единица ее измерения.

За единицу измерения количества информации принято одно из состояний двухпозиционного элемента. Эту единицу назвали б и т. Информация о том, что двухпозиционный элемент находится в состоянии ʼʼ0ʼʼ или ʼʼ1ʼʼ и есть информация размером в один бит. В оперативной памяти всœе элементы информации (символы, числа) хранятся в я ч е й к а х. Ячейка - ϶ᴛᴏ небольшой участок памяти. Ячейки бывают различного размера исходя из вида хранимой в них информации. Каждая ячейка имеет свой адрес. Адресом ячейки является ее порядковый номер.
Размещено на реф.рф
За минимальный размер ячейки принят ее размер, определяемый восœемью рядом расположенными двухпозиционными элементами. Ячейку такого размера принято называть один байт. На рис. 2.1 представлена схема такой ячейки.

Рис. 2.1 Ячейка размером в один байт

Такая ячейка может хранить 2= 256 вариантов информации. То есть 256 различных комбинаций 0 и 1. Количеством таких ячеек принято измерять размер памяти или как принято говорить объем памяти . Объем памяти в один байт – минимальная единица ее измерения. Но это очень мелкая единица, в связи с этим были приняты другие более крупные единицы.

1 Кбайт (килобайт) = 2байт = 1024 байт;

1 Мбайт (мегабайт) = 2Кбайт = 1024 Кбайт = 2байт;

1 Гбайт (гигабайт) = 2Мбайт = 1024 Мбайт = 2 байт.

1 Тбайт (терабайт) = 2Гбайт = 1024 Гбайт = 2 40 байт.

Следует помнить, что оперативная память хранит только текущую информацию. При отключении компьютера информация теряется. Сама оперативная память имеет несколько участков (зон).

Основной объём памяти отведен под участок, в котором можно без каких-либо ограничений считывать и записывать информацию. Этот участок называют о п е р а т и в н ы м з а п о м и н а ю щ и м у с т р о й с т в о м (ОЗУ). Он имеет произвольный доступ к ячейкам. Такой доступ позволяет получать данные по любым адресам и в любом порядке.

Другим участком оперативной памяти является п о с т о я н н о е з а п о м и н а ю щ е е у с т р о й с т в о (ПЗУ). Его содержимое можно только читать и никакая работающая программа не сможет его изменить. Эта информация всœегда неизменна и постоянно доступна, в т.ч. и в момент включения компьютера. В ПЗУ размещена программа загрузки компьютера в момент его включения. Под загрузкой понимают создание копий различных программ или данных в оперативной памяти, оригиналы которых размещены на каких-либо внешних носителях информации (винчестер, дискеты, компакт- диски и др.). В ПЗУ содержится минимум необходимых программ, которые заносятся в него заводом-изготовителœем компьютера. К ним относятся программы тестирования важнейших функциональных узлов в момент включения компьютера (память, клавиатура, дисплей и др.). Это программы системы ввода/вывода информации BIOS (B asic I npu t O utput S ystem ). В последнее время появилась возможность самому потребителю заносить необходимую информацию в ПЗУ, поместив ʼʼчистуюʼʼ микросхему ПЗУ в специальное устройство называемое программатором . Сегодня появились такие микросхемы ПЗУ, которые позволяют их перепрограммировать по несколько раз. Οʜᴎ получили название ППЗУ (п ерепрограммируемые п остоянные з апоминающие у стройства). Одной из последних конструкций ППЗУ является флэш - память .

По способу реализации двухпозиционных элементов различают память:

- с т а т и ч е с к у ю,

- д и н а м и ч е с к у ю.

Статическая память реализуется на базе транзисторных двухпозиционных элементах, триггерах . Эти элементы имеют два устойчивых состояния и могут находиться в каком–либо из них сколь угодно долго.

Динамическая память реализуются на базе двухпозиционных элементов, в базе которых используются конденсаторы. Логической единице соответствует заряженный конденсатор, а логическому нулю – незаряженный. Существенным недостатком динамической памяти является постепенный разряд конденсаторов через внешние цепи, что ведет к потере информации. Чтобы это не происходило, конденсаторы динамической памяти крайне важно периодически подзаряжать. Такой процесс называют р е г е н е р а ц и е й ОЗУ.

Сегодня всœе большее предпочтение отдается динамической памяти, как более простой в изготовлении, занимающей меньше места и более дешевой. Следует отметить, что технология производства полупроводниковой памяти постоянно совершенствуется. Это порождает появление новых микросхем памяти. В современных компьютерах объём оперативной памяти достигает нескольких десятков Гбайт.

2.2. Кэш – память

Существует противоречие между быстродействующей, но более дорогой статической памятью и худшей по характеристикам, но более дешевой динамической памятью. Разумным компромиссом для построения экономичных и производительных систем является использование промежуточной к э ш - п а м я т и. Этот вид памяти появился сравнительно недавно. Начиная с 486-го процессора, всœе модели компьютеров оснащаются кэш – памятью.

Кэш представляет собой ʼʼбыструюʼʼ статическую память небольшого объёма, которая служит для ускорения доступа к ʼʼмедленнойʼʼ динамической памяти.

Основная идея работы кэш – памяти состоит по сути в том, что извлеченные из ОЗУ данные или команды программы, копируются в кэш. Одновременно в специальном каталоге адресов, который находится в той же самой памяти, запоминается адрес, откуда была извлечена информация. В случае если данные потребуются повторно, то уже не нужно будет терять время на обращение к ОЗУ. Их можно получить из кэш – памяти значительно быстрее.

Поскольку объём кэш – памяти существенно меньше объёма оперативной памяти, то контроллер кэш – памяти внимательно следит за тем, какие данные следует сохранять, а какие крайне важно заменять. Удаляется та информация, которая используется реже или совсœем не используется. Контроллер также обеспечивает своевременную замену измененных данных из кэш – памяти обратно в ОЗУ.

В современных компьютерах кэш – память реализуется на двух уровнях:

– первый,

– второй .

Первый уровень памяти встроен непосредственно в процессор, а второй устанавливается на системной плате. Как и для ОЗУ увеличение объёма кэш – памяти повышает эффективность работы компьютера.

Оперативная память - понятие и виды. Классификация и особенности категории "Оперативная память" 2017, 2018.

Очень много пользователей компьютера часто задаются вопросом - что такое ОЗУ. Чтобы помочь нашим читателям подробно разобраться с ОЗУ, мы подготовили материал, в котором подробно рассмотрим, где его можно использовать и какие его типы сейчас используются. Также мы рассмотрим немного теории, после чего вы поймете, что собой представляет современная память.

Немного теории

Аббревиатура ОЗУ расшифровывается как - оперативное запоминающее устройство . По сути, это оперативная память, которая в основном используется в ваших компьютерах. Принцип работы любого типа ОЗУ построен на хранении информации в специальных электронных ячейках . Каждая из ячеек имеет размер в 1 байт, то есть в ней можно хранить восемь бит информации. К каждой электронной ячейке прикрепляется специальный адрес . Этот адрес нужен для того, чтобы можно было обращаться к определенной электронной ячейке, считывать и записывать ее содержимое.

Также считывание и запись в электронную ячейку должна осуществляться в любой момент времени. В английском варианте ОЗУ - это RAM . Если мы расшифруем аббревиатуру RAM (Random Access Memory) - память произвольного доступа , то становится ясно, почему считывание и запись в ячейку осуществляется в любой момент времени.

Информация хранится и перезаписывается в электронных ячейках только тогда, когда ваш ПК работает , после его выключения вся информация, которая находится в ОЗУ, стирается. Совокупность электронных ячеек в современной оперативке может достигать объема от 1 ГБ до 32 ГБ. Типы ОЗУ, которые сейчас используются, носят название DRAM и SRAM .

  • Первая, DRAM представляет собой динамическую оперативную память, которая состоит из конденсаторов и транзисторов . Хранение информации в DRAM обусловлено наличием или отсутствием заряда на конденсаторе (1 бит информации), который образуется на полупроводниковом кристалле. Для сохранения информации этот вид памяти требует регенерации . Поэтому это медленная и дешевая память.
  • Вторая, SRAM представляет собой ОЗУ статического типа . Принцип доступа к ячейкам в SRAM основан на статическом триггере, который включает в себя несколько транзисторов. SRAM является дорогой памятью, поэтому используется, в основном, в микроконтроллерах и интегральных микросхемах, в которых объем памяти невелик. Это быстрая память, не требующая регенерации .

Классификация и виды SDRAM в современных компьютерах

Наиболее распространенным подвидом памяти DRAM является синхронная память SDRAM . Первым подтипом памяти SDRAM является DDR SDRAM. Модули оперативной памяти DDR SDRAM появились в конце 1990-х. В то время были популярны компьютеры на базе процессов Pentium. На изображении ниже показана планка формата DDR PC-3200 SODIMM на 512 мегабайт от фирмы GOODRAM.

Приставка SODIMM означает, что память предназначена для ноутбука . В 2003 году на смену DDR SDRAM пришла DDR2 SDRAM . Эта память использовалась в современных компьютерах того времени вплоть до 2010 года, пока ее не вытеснила память следующего поколения. На изображении ниже показана планка формата DDR2 PC2-6400 на 2 гигабайта от фирмы GOODRAM. Каждое поколение памяти демонстрирует все большую скорость обмена данными.

На смену формата DDR2 SDRAM в 2007 году пришел еще более быстрый DDR3 SDRAM . Этот формат по сегодняшний день остается самым популярным, хоть и в спину ему дышит новый формат. Формат DDR3 SDRAM сейчас применяется не только в современных компьютерах, но также в смартфонах , планшетных ПК и бюджетных видеокартах . Также память DDR3 SDRAM используется в игровой приставке Xbox One восьмого поколения от Microsoft. В этой приставке используется 8 гигабайт ОЗУ формата DDR3 SDRAM. На изображении ниже показана память формата DDR3 PC3-10600 на 4 гигабайта от фирмы GOODRAM.

В ближайшее время тип памяти DDR3 SDRAM заменит новый тип DDR4 SDRAM . После чего DDR3 SDRAM ждет судьба прошлых поколений. Массовый выпуск памяти DDR4 SDRAM начался во втором квартале 2014 года, и она уже используется на материнских платах с процессорным разъемом Socket 1151 . На изображении ниже показана планка формата DDR4 PC4-17000 на 4 гигабайта от фирмы GOODRAM.

Пропускная способность DDR4 SDRAM может достигать 25 600 Мб/c .

Как определить тип оперативки в компьютере

Определить тип оперативной памяти, которая находится в ноутбуке или в стационарном компьютере можно очень легко, используя утилиту CPU-Z . Эта утилита является абсолютно бесплатной. Загрузить CPU-Z можно с ее официального сайта www.cpuid.com. После загрузки и установки, откройте утилиту и перейдите ко вкладке «SPD ». На изображении ниже показано окно утилиты с открытой вкладкой «SPD ».

В этом окне видно, что в компьютере, на котором открыта утилита, установлена оперативная память типа DDR3 PC3-12800 на 4 гигабайта от компании Kingston. Таким же образом можно определить тип памяти и ее свойства на любом компьютере. Например, ниже изображено окно CPU-Z с ОЗУ DDR2 PC2-5300 на 512 ГБ от компании Samsung.

А в этом окне изображено окно CPU-Z с ОЗУ DDR4 PC4-21300 на 4 ГБ от компании ADATA Technology.

Данный способ проверки просто незаменим в ситуации, когда нужно проверить на совместимость память, которую вы собираетесь приобрести для расширения ОЗУ вашего ПК.

Подбираем оперативку для нового системника

Чтобы подобрать оперативную память к определенной компьютерной конфигурации, мы опишем ниже пример, из которого видно как легко можно подобрать ОЗУ к любой конфигурации ПК. Для примера мы возьмем такую новейшую конфигурацию на базе процессора Intel:

  • Процессор - Intel Core i7-6700K;
  • Материнская плата - ASRock H110M-HDS на чипсете Intel Н110;
  • Видеокарта - GIGABYTE GeForce GTX 980 Ti 6 ГБ GDDR5;
  • SSD - Kingston SSDNow KC400 на 1000 ГБ;
  • Блок питания - Chieftec A-135 APS-1000C мощностью 1000 Вт.

Чтобы подобрать оперативку для такой конфигурации, нужно перейти на официальную страницу материнской платы ASRock H110M-HDS - www.asrock.com/mb/Intel/H110M-HDS.

На странице можно найти строку «Supports DDR4 2133 », которая гласит, что для материнской платы подходит оперативка с частотой 2133 MHz. Теперь перейдем в пункт меню «Specifications » на этой странице.

В открывшейся странице можно найти строку «Max. capacity of system memory: 32GB », которая гласит, что наша материнская плата поддерживает до 32 гигабайт ОЗУ. Из данных, которые мы получили на странице материнской платы можно сделать вывод, что для нашей системы приемлемым вариантом будет оперативка такого типа - два модуля памяти DDR4-2133 16 ГБ PC4-17000.

Мы специально указали два модуля памяти по 16 ГБ, а не один на 32, так как два модуля могут работать в двухканальном режиме .

Вы можете установить вышеописанные модули от любого производителя, но лучше всего подойдут эти модули ОЗУ. Они представлены на официальной странице к материнской плате в пункте «Memory Support List », так как их совместимость проверена производителем.

Из примера видно, как легко можно узнать информацию по поводу рассматриваемого системника. Таким же образом подбирается оперативная память для всех остальных компьютерных конфигураций. Также хочется отметить, что на рассмотренной выше конфигурации можно запустить все новейшие игры с самыми высокими настройками графики.

Например, на этой конфигурации запустятся без проблем в разрешении 4K такие новые игры, как Tom Clancy’s The Division , Far Cry Primal , Fallout 4 и множество других, так как подобная система отвечает всем реалиям игрового рынка. Единственным ограничением для такой конфигурации будет ее цена . Примерная цена такого системника без монитора, включая два модуля памяти, корпус и комплектующие, описанные выше, составит порядка 2000 долларов .

Классификация и виды SDRAM в видеокартах

В новых видеокартах и в старых моделях используется тот же тип синхронной памяти SDRAM. В новых и устаревших моделях видеокарт наиболее часто используется такой тип видеопамяти:

  • GDDR2 SDRAM - пропускная способность составляет до 9,6 ГБ/с;
  • GDDR3 SDRAM - пропускная способность составляет до 156.6 ГБ/с;
  • GDDR5 SDRAM - пропускная способность составляет до 370 ГБ/с.

Чтобы узнать тип вашей видеокарты, объем ее ОЗУ и тип памяти, нужно воспользоваться бесплатной утилитой GPU-Z . Например, на изображении ниже изображено окно программы GPU-Z , в котором описаны характеристики видеокарты GeForce GTX 980 Ti .

На смену популярной сегодня GDDR5 SDRAM в ближайшем будущем придет GDDR5X SDRAM . Это новая классификация видеопамяти обещает поднять пропускную способность до 512 ГБ/с . Ответом на вопрос, чего хотят добиться производители от такой большой пропускной способности, достаточно прост. С приходом таких форматов, как 4K и 8K, а также VR устройств производительности нынешних видеокарт уже не хватает.

Разница между ОЗУ и ПЗУ

ПЗУ расшифровывается как постоянное запоминающее устройство . В отличие от оперативной памяти, ПЗУ используют для записи информации, которая будет храниться там постоянно. Например, ПЗУ используют в таких устройствах:

  • Мобильные телефоны;
  • Смартфоны;
  • Микроконтроллеры;
  • ПЗУ БИОСа;
  • Различные бытовые электронные устройства.

Во всех описанных устройствах выше, код для их работы хранится в ПЗУ . ПЗУ является энергонезависимой памятью , поэтому после выключения этих устройств вся информация сохранится в ней - значит это и является главным отличием ПЗУ от ОЗУ.

Подводим итог

В этой статье мы кратко узнали все подробности, как в теории, так и на практике, касающиеся оперативного запоминающего устройства и их классификации, а также рассмотрели, в чем разница между ОЗУ и ПЗУ.

Также наш материал будет особенно полезен тем пользователям ПК, которые хотят узнать свой тип ОЗУ, установленный в компьютере, или узнать какую оперативку нужно применять для различных конфигураций.

Надеемся, наш материал окажется интересным для наших читателей и позволит им решить множество задач, связанных с оперативной памятью.

Видео по теме

). Он в основном практический: что выбрать, что можно ставить и что нельзя, ну и различные полезности. Однако он не затронул, пожалуй, самую интересную часть - а как память вообще работает, и как ее тонко настроить (и разогнать). Если посмотреть, то по количеству параметров ОЗУ является чуть ли не самым сложным элементом ПК: посудите сами, для процессора вы в лучшем случае можете менять частоту тактового генератора (FSB, да и к тому же она уже лет 15 как 100 МГц и редко кто ее трогает), множитель (его как раз и меняют) и напряжение (ибо для работы на более высоких или низких частотах всегда можно подкорректировать напряжение для стабильности работы и, в некоторых случаях, меньшего энергопотребления), ну и количество рабочих ядер (хотя мало кто будет их трогать - разве что многопоточность отключают, ибо в некоторых задачах она может дать отрицательный прирост). Все остальные параметры уже индивидуальны и есть не у всех процессоров, так что зачастую их и не трогают. Что касается видеокарт, то тут параметров еще меньше - всего-то частоты GPU, памяти и напряжение GPU. Но если мы посмотрим на ОЗУ, то увидим море важных параметров: задержки, частоты, транзакции в секунду и т.д. - давайте разберемся, что это и как связано с производительностью и стабильностью работы памяти.

Технические характеристики памяти

Для начала нужно понять, что означают те или иные циферки и буковки в спецификациях памяти. Посмотреть их можно или на самой памяти, или на ее коробке, или в специальных программах типа AIDA64. Я разберу на примере своей памяти, но у вас будут схожие данные. Итак, вот скриншот из AIDA64:

Что мы видим про память? То, что она Dual Channel DDR4-3200 SDRAM (16-18-18-36-CR2). Если погуглить маркировку самих чипов, то можно узнать еще немного информации - PC4-17000 1.2 В. Пойдем по порядку. Что означает Dual Channel (у вас может быть и Single, и Triple, и Quad - хотя если у вас последнее, то вы, скорее всего, знаете, что это)? Это означает, что память работает в двухканальном режиме (или одноканальном, или в трехканальном, четырехканальном и т.д.). Если у вас стоит одна планка памяти, то она будет работать в одноканальном режиме - то есть характеристики чтения и записи будут приблизительно такими же, которые указаны на ней (на деле все зависит от контроллера памяти, и на практике значения могут быть на 10-15% ниже). Если у вас стоит две и больше планок с одинаковыми характеристиками, то они могут работать вместе: в таком случае объем увеличивается пропорционально числу модулей, и скорость также растет почти линейно. Поэтому если у вас одноканальная память и интегрированная графика, которая использует ОЗУ как видеопамять, и если вы на ПК занимаетесь чем-то серьезнее просмотра фильмов и сидения в интернете - в первую очередь нужно купить еще одну планку ОЗУ и сделать двухканальный режим (как это делается - написано в практической статье), ибо вы тем самым фактически удваиваете производительность ОЗУ (ну а двухканальные контроллеры памяти имеют 90% современных процессоров).

Идем дальше - сочетание букв DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access Memory - синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных). Здесь нам интересна только концовка - «и удвоенной скоростью передачи данных». Смысл тут в том, что в старом типе памяти SDRAM данные считывались только при переходе из стостояния «0» в состояние «1» (по фронту сигнала). В DDR же решили считывать данные и при переходе из состояния «1» в состояние «0» (по спаду сигнала), то есть реальная частота памяти удвоилась. Однако с аппаратной точки зрения частота памяти остается той же, поэтому, например, в том же CPU-Z частота памяти будет вдвое ниже, чем в диспетчере задач:


Как я уже объяснил выше - пугаться этого не стоит, это особенность DDR.

Далее - что означает четверка в DDR4? В общем-то только одно - что это 4ое поколение памяти DDR. Отличия между всеми типами можно посмотреть на Вики, не вижу особого смысла это переписывать, но скажу, что основной прирост идет за счет роста частоты памяти.

Теперь посмотрим всю конструкцию - DDR4-3200. Очень многие после 3200 подписывают МГц - в общем-то, это не совсем правильно. На самом деле тут имеется ввиду МТ/с, или мегатранзакции в секунду. Что это за величина? Это величина, которая показывает, сколько операций в секунду может совершаться с памятью. С учетом того, что ширина шины DDR4 составляет 64 бита (или 8 байт), можно получить ее скорость в МБ/с - для этого нужно 3200 МТ/с * 8 Б = 25600 МБ/с. И тут следует сказать, что эта цифра зачастую уже пишется на самой памяти - в моем случае это PC4-17000. Вы скажете - 17000 не равно 25600. Все верно, в моем случае память разогнана, если взять ее реальную скорость в 2133 МТ/с то мы как раз получим 17000 МБ/с. Ну а PC4 в данном случае - эквивалент DDR4. То есть, как вы видите, DDR4-2133 и PC4-17000 - эквивалентные записи, поэтому для понимания того, какая у вас память, достаточно знать только одну из них.

Теперь идет конструкция 16-18-18-36-CR2. Для объяснения этих цифр нужно посмотреть, что же из себя представляет современная DDR-память. По сути она - набор ячеек, хранящих информацию. Каждая ячейка имеет внутри себя транзисторы и конденсаторы, и располагается она в двумерном массиве вместе с другими ячейками. Ну а принцип действия прост: конденсаторы заряжаются при записи в ячейку единичного бита и разряжаются при записи нулевого бита. Отсюда, кстати, возникает проблема - дабы избежать разрядки конденсаторов и потери информации, их нужно постоянно заряжать - именно поэтому при отключении питания ПК вся информация из ОЗУ стирается.

Основная проблема при работе с ОЗУ - это задержки (latency) при доступе к ячейкам памяти. Логично, что чем меньше задержка - тем быстрее будет идти чтение/запись - тем меньше будет простаивать процессор в ожидании ответа от ОЗУ - тем быстрее будет быстродействие. Посмотрим, какие бывают задержки и за что они отвечают.

Разумеется, каждая ячейка имеет свой «адрес»: грубо говоря, это ее номер в строке и столбце таких же ячеек в двухмерном массиве. В свою очередь, некоторое количество ячеек объединяется вместе для более быстрого доступа к ним - такая группа называется банком. Теперь посмотрим, что происходит, когда контроллер памяти хочет что-то записать в определенную ячейку. Для начала он обращается в банку с адресом строки - этот сигнал называется RAS (Row Address Strobe). Соответственно, время обращения (задержка) называется RAS Latency - но этот параметр малоинформативен и очень редко пишется. Зато важен параметр RAS to CAS Delay - это процесс поиска нужной строки в банке памяти. Вот этот параметр уже нужен, и его задержка пишется второй - то есть в моем случае он составляет 18 тактов (один такт - это одна отправка данных по шине памяти). Великолепно, всего за 18 тактов мы нашли нужную строку. Но ведь нужен еще и столбец - за него отвечает еще один сигнал, CAS, и его задержка пишется первой - в моем случае это 16 тактов. Казалось бы - все, мы получили точное расположение нашей ячейки, зачем еще две цифры?


Не все так просто - зачастую бывает, что контроллеру нужно обратиться к другой ячейке этой же строки. Но для этого он должен сначала закрыть предыдущую сессию запроса (нельзя одновременно обращаться к различным ячейкам одной строки) - а на это опять же уходит время, и эта задержка называется RAS Precharge - она указывает на время закрытия и повторной активации строки. Ее пишут третьей, в моем случае это опять же 18 тактов. Последний параметр - Cycle Time - отвечает за время, необходимое для полного открытия и закрытия всего банка, иными словами - это быстродействие всей памяти. Он пишется четвертым, и у меня он 36 тактов.

Остался последний параметр - CR (Command Rate), он может быть 1 или 2. Отвечает этот параметр за время, которое должно пройти между активацией памяти и ее способности к работе - это 1 или 2 такта. Разумеется, 1 такт лучше, но тут уж как повезет с памятью.

Разумеется, такой параметр как такт не очень нагляден - интереснее узнать результат в наносекундах. Для этого узнаем, сколько времени занимает один такт - это 1 / 1200 МГц = 0.83 нс (берем, разумеется, реальную частоту памяти). Cycle Time у памяти 36 тактов, то есть задержка получается 0.83 нс * 36 = 30 нс. Тогда почему AIDA64 показывает результат около 48 нс? Все просто - сам процессор хоть и небольшой, но из-за крайне малых промежутков времени (миллиардные доли секунды) приходится учитывать время на проход сигнала внутри него, что и добавляет дополнительные 18 нс.

Вот в общем-то и все, теперь Dual Channel DDR4-3200 SDRAM (16-18-18-36-CR2) для вас не просто куча символов, а вполне осмысленный набор параметров, который позволяет достаточно точно понять, что за ОЗУ перед вами.

Разгон ОЗУ

У внимательного читателя мог возникнуть вопрос - а что же важнее, более высокая частота памяти или более низкие тайминги (задержки)? Ведь, с одной стороны, чем выше частота - тем быстрее производительность памяти и системы в целом. С другой стороны, чем ниже тайминги - тем быстрее будет происходить обращение к памяти и меньше будет простаивать CPU, то есть - тем быстрее будет работать ПК. С учетом того, что чем выше частота - тем выше тайминги, тут нужно соблюсти баланс. Увы - у каждого он свой, так что разгон памяти - достаточно кропотливое занятие по выставлению различных таймингов, напряжений и частот, и тесты скорости работы ОЗУ в системе. Разумеется, далеко не все хотят заниматься перебором, поэтому в продаже есть память с поддержкой профилей DOCP и XMP. Это - уже зашитые в память профили авторазгона, где прописаны напряжения, частоты и тайминги, на которых память гарантированно заработает - вам лишь нужно выбрать нужный профиль в UEFI. Плюсы такого метода очевидны - вы получаете разгон в один клик. Минусы тоже - во-первых, такая память стоит дороже, причем чем выше гарантированная частота - чем больше цена. Во-вторых, профили не идеальны, и зачастую можно выжать еще 5-10% производительности, но опять же - ковыряясь в таймингах.

Ну и самый последний ожидаемый вопрос - а стоит ли вообще разгонять ОЗУ? Все зависит от ваших задач и процессоров: к примеру, в 6 и 8-ядерных AMD Ryzen частота шины, связывающей два процессорных кристалла, напрямую зависит от частоты ОЗУ, так что там ее разгон как говорится «маст хэв». В играх особого прироста производительности от разгона памяти стоит ждать лишь в топовых системах, и то это будет разница между 110 и 120 fps - с одной стороны, приятный бонус, с другой - разница-то все равно не заметна на глаз. Ну а лучше всего заметен разгон в задачах, тесно связанных с ОЗУ - к примеру, архивацией, где у процессоров зачастую не хватает кэша, и они вынуждены часто обращаться к памяти.

Обмен данными между процессором и оперативной памятью производится:

  1. непосредственно,
  2. либо через сверхбыструю память, 0-го уровня - регистры в АЛУ , либо при наличии кэша - через него.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим «сна», что значительно сокращает уровень потребления компьютером электроэнергии. Для сохранения содержимого ОЗУ в таком случае , применяют запись содержимого оперативной памяти в специальный файл (в системе Windows XP он называется hiberfil.sys).

В общем случае, оперативная память содержит данные операционной системы и запущенных на выполнение программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер.

Оперативное запоминающее устройство , ОЗУ - техническое устройство , реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию, например однокристальной ЭВМ или микроконтроллера .

История

Начиная с третьего поколения большинство узлов компьютеров стали выполнять на микросхемах , в том числе и оперативную память. Наибольшее распространение получили два вида ОЗУ: на основе конденсаторов (динамическая память) и триггеров (статическая память). Оба этих вида памяти не способны сохранять данные при отключении питания - для этой цели используется Энергонезависимая память .

ОЗУ современных компьютеров

ОЗУ большинства современных компьютеров представляет собой модули динамической памяти, содержащие полупроводниковые ИС ЗУ, организованные по принципу устройств с произвольным доступом . Память динамического типа дешевле, чем статического, и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше ячеек памяти, но при этом её быстродействие ниже. Статическая, наоборот, более быстрая память, но она и дороже. В связи с этим массовую оперативную память строят на модулях динамической памяти, а память статического типа используется для построения кеш-памяти внутри микропроцессора.

Память динамического типа (англ. DRAM (Dynamic Random Access Memory) )

Экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус - конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость.

За то, что разряды в ней хранятся не статически, а «стекают» динамически во времени, память на конденсаторах получила своё название динамическая память. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов для восстановления необходимо «регенерировать» через определённый интервал времени. Регенерация выполняется центральным микропроцессором или контроллером памяти, за определённое количество тактов считывания при адресации по строкам. Так как для регенерации памяти периодически приостанавливаются все операции с памятью, это значительно снижает производительность данного вида ОЗУ.

Память статического типа (англ. SRAM (Static Random Access Memory) )

ОЗУ, которое не надо регенерировать (и обычно схемотехнически собранное на триггерах), называется статической памятью с произвольным доступом или просто статической памятью . Достоинство этого вида памяти - скорость. Поскольку триггеры собраны на вентилях , а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов , входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке . Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Используется для организации сверхбыстрого ОЗУ , критичного к скорости работы.

Логическая структура памяти в IBM PC

В реальном режиме память делится на следующие участки:

  • Основная область памяти (англ. conventional memory ).

См. также

  • Советские микросхемы для построения запоминающих устройств

Литература

  • Скотт Мюллер. Глава 6. Оперативная память // Модернизация и ремонт ПК = Upgrading and Repairing PCs. - 17-е изд. - М .: Вильямс, 2007. - С. 499-572. - ISBN 0-7897-3404-4
  • Под. ред. чл.-корр. АН УССР Б. Н. Малиновского. Глава 2.3 БИС ЗУ для построения внутренней памяти // Справочник по персональным ЭВМ. - К. : Тэхника, 1990. - С. 384. - ISBN 5-335-00168-2

Последние материалы сайта