Быстрая сортировка на c и ее сложность. Рекурсивный алгоритм быстрой сортировки по возрастанию

11.07.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот
незнакомец 30 мая 2011 в 15:24

Быстрая сортировка и с чем её едят

  • Чулан *

Всем привет! Я расскажу об алгоритме быстрой сортировки и покажу, как его можно реализовать программно.

Итак, быстрая сортировка, или, по названию функции в Си, Qsort - это алгоритм сортировки, сложность которого в среднем составляет O(n log(n)). Суть его предельно проста: выбирается так называемый опорный элемент, и массив делится на 3 подмассива: меньших опорного, равных опорному и больших опорного. Потом этот алгоритм применяется рекурсивно к подмассивам.

Алгоритм

  1. Выбираем опорный элемент
  2. Разбиваем массив на 3 части
    • Создаём переменные l и r - индексы соответственно начала и конца рассматриваемого подмассива
    • Увеличиваем l, пока l-й элемент меньше опорного
    • Уменьшаем r, пока r-й элемент больше опорного
    • Если l всё ещё меньше r, то меняем l-й и r-й элементы местами, инкрементируем l и декрементируем r
    • Если l вдруг становится больше r, то прерываем цикл
  3. Повторяем рекурсивно, пока не дойдём до массива из 1 элемента
Что ж, выглядит не так уж сложно. Реализуем на Си? Нет проблем!
void qsort (int b, int e)
{
int l = b, r = e;
int piv = arr[(l + r) / 2]; // Опорным элементом для примера возьмём средний
while (l <= r)
{
while (arr[l] < piv)
l++;
while (arr[r] > piv)
r--;
if (l <= r)
swap (arr, arr);
}
if (b < r)
qsort (b, r);
if (e > l)
qsort (l, e);
} /* ----- end of function qsort ----- */

// qsort (0, n-1);


* This source code was highlighted with Source Code Highlighter .

Эта реализация имеет ряд недостатков, таких как возможное переполнение стека из-за большого количества вложенной рекурсии и то, что опорным элементом всегда берётся средний. Для примера это, может, и нормально, но при решении, например, олимпиадных задач, хитрое жюри может специально подобрать такие тесты, чтобы на них это решение работало слишком долго и не проходило в лимит. В принципе, в качестве опорного элемента можно брать любой, но лучше, чтобы он был максимально приближен к медиане, поэтому можно выбрать его случайно или взять средний по значению из первого, среднего и последнего. Зависимость быстродействия от опорного элемента - один из недостатков алгоритма, ничего с этим не поделать, но сильная деградация производительности происходит редко, обычно если сортируется специально подобранный набор чисел. Если всё-таки нужна сортировка, работающая гарантированно быстро, можно использовать, например, пирамидальную сортировку, всегда работающую строго за O(n log n). Обычно Qsort всё же выигрывает в производительности перед другими сортировками, не требует много дополнительной памяти и достаточно прост в реализации, поэтому пользуется заслуженной популярностью.

Писáл сам, изредка поглядывая на Википедию . Пользуясь случаем, передаю спасибо замечательным преподавателям и студентам ПетрГУ, научившим меня множеству полезных вещей, в том числе и этому алгоритму!

Теги: Qsort, быстрая сортировка, алгоритмы сортировки, алгоритмы, C

Алгоритмы и структуры данных для начинающих: сортировка

Никита Прияцелюк

В этой части мы посмотрим на пять основных алгоритмов сортировки данных в массиве. Начнем с самого простого - сортировки пузырьком - и закончим «быстрой сортировкой» (quicksort) .

Для каждого алгоритма, кроме объяснения его работы, мы также укажем его сложность по памяти и времени в наихудшем, наилучшем и среднем случае.

Также смотрите другие материалы этой серии: , и .

Метод Swap

Для упрощения кода и улучшения читаемости мы введем метод Swap , который будет менять местами значения в массиве по индексу.

Void Swap(T items, int left, int right) { if (left != right) { T temp = items; items = items; items = temp; } }

Пузырьковая сортировка

Сортировка пузырьком - это самый простой алгоритм сортировки. Он проходит по массиву несколько раз, на каждом этапе перемещая самое большое значение из неотсортированных в конец массива.

Например, у нас есть массив целых чисел:

При первом проходе по массиву мы сравниваем значения 3 и 7. Поскольку 7 больше 3, мы оставляем их как есть. После чего сравниваем 7 и 4. 4 меньше 7, поэтому мы меняем их местами, перемещая семерку на одну позицию ближе к концу массива. Теперь он выглядит так:

Этот процесс повторяется до тех пор, пока семерка не дойдет почти до конца массива. В конце она сравнивается с элементом 8, которое больше, а значит, обмена не происходит. После того, как мы обошли массив один раз, он выглядит так:

Поскольку был совершен по крайней мере один обмен значений, нам нужно пройти по массиву еще раз. В результате этого прохода мы перемещаем на место число 6.

И снова был произведен как минимум один обмен, а значит, проходим по массиву еще раз.

При следующем проходе обмена не производится, что означает, что наш массив отсортирован, и алгоритм закончил свою работу.

Public void Sort(T items) { bool swapped; do { swapped = false; for (int i = 1; i < items.Length; i++) { if (items.CompareTo(items[i]) > 0) { Swap(items, i - 1, i); swapped = true; } } } while (swapped != false); }

Сортировка вставками

Сортировка вставками работает, проходя по массиву и перемещая нужное значение в начало массива. После того, как обработана очередная позиция, мы знаем, что все позиции до нее отсортированы, а после нее - нет.

Важный момент: сортировка вставками обрабатывает элементы массива по порядку. Поскольку алгоритм проходит по элементам слева направо, мы знаем, что все, что слева от текущего индекса - уже отсортировано. На этом рисунке показано, как увеличивается отсортированная часть массива с каждым проходом:

Постепенно отсортированная часть массива растет, и, в конце концов, массив окажется упорядоченным.

Давайте взглянем на конкретный пример. Вот наш неотсортированный массив, который мы будем использовать:

Алгоритм начинает работу с индекса 0 и значения 3. Поскольку это первый индекс, массив до него включительно считается отсортированным.

На этом этапе элементы с индексами 0..1 отсортированы, а про элементы с индексами 2..n ничего не известно.

Следующим проверяется значение 4. Так как оно меньше семи, мы должны перенести его на правильную позицию в отсортированную часть массива. Остается вопрос: как ее определить? Это осуществляется методом FindInsertionIndex . Он сравнивает переданное ему значение (4) с каждым значением в отсортированной части, пока не найдет место для вставки.

Итак, мы нашли индекс 1 (между значениями 3 и 7). Метод Insert осуществляет вставку, удаляя вставляемое значение из массива и сдвигая все значения, начиная с индекса для вставки, вправо. Теперь массив выглядит так:

Теперь часть массива, начиная от нулевого элемента и заканчивая элементом с индексом 2, отсортирована. Следующий проход начинается с индекса 3 и значения 4. По мере работы алгоритма мы продолжаем делать такие вставки.

Когда больше нет возможностей для вставок, массив считается полностью отсортированным, и работа алгоритма закончена.

Public void Sort(T items) { int sortedRangeEndIndex = 1; while (sortedRangeEndIndex < items.Length) { if (items.CompareTo(items) < 0) { int insertIndex = FindInsertionIndex(items, items); Insert(items, insertIndex, sortedRangeEndIndex); } sortedRangeEndIndex++; } } private int FindInsertionIndex(T items, T valueToInsert) { for (int index = 0; index < items.Length; index++) { if (items.CompareTo(valueToInsert) > 0) { return index; } } throw new InvalidOperationException("The insertion index was not found"); } private void Insert(T itemArray, int indexInsertingAt, int indexInsertingFrom) { // itemArray = 0 1 2 4 5 6 3 7 // insertingAt = 3 // insertingFrom = 6 // // Действия: // 1: Сохранить текущий индекс в temp // 2: Заменить indexInsertingAt на indexInsertingFrom // 3: Заменить indexInsertingAt на indexInsertingFrom в позиции +1 // Сдвинуть элементы влево на один. // 4: Записать temp на позицию в массиве + 1. // Шаг 1. T temp = itemArray; // Шаг 2. itemArray = itemArray; // Шаг 3. for (int current = indexInsertingFrom; current > indexInsertingAt; current--) { itemArray = itemArray; } // Шаг 4. itemArray = temp; }

Сортировка выбором

Сортировка выбором - это некий гибрид между пузырьковой и сортировкой вставками. Как и сортировка пузырьком, этот алгоритм проходит по массиву раз за разом, перемещая одно значение на правильную позицию. Однако, в отличие от пузырьковой сортировки, он выбирает наименьшее неотсортированное значение вместо наибольшего. Как и при сортировке вставками, упорядоченная часть массива расположена в начале, в то время как в пузырьковой сортировке она находится в конце.

Давайте посмотрим на работу сортировки выбором на нашем неотсортированном массиве.

При первом проходе алгоритм с помощью метода FindIndexOfSmallestFromIndex пытается найти наименьшее значение в массиве и переместить его в начало.

Имея такой маленький массив, мы сразу можем сказать, что наименьшее значение - 3, и оно уже находится на правильной позиции. На этом этапе мы знаем, что на первой позиции в массиве (индекс 0) находится самое маленькое значение, следовательно, начало массива уже отсортировано. Поэтому мы начинаем второй проход - на этот раз по индексам от 1 до n – 1.

На втором проходе мы определяем, что наименьшее значение - 4. Мы меняем его местами со вторым элементом, семеркой, после чего 4 встает на свою правильную позицию.

Теперь неотсортированная часть массива начинается с индекса 2. Она растет на один элемент при каждом проходе алгоритма. Если на каком-либо проходе мы не сделали ни одного обмена, это означает, что массив отсортирован.

После еще двух проходов алгоритм завершает свою работу:

Public void Sort(T items) { int sortedRangeEnd = 0; while (sortedRangeEnd < items.Length) { int nextIndex = FindIndexOfSmallestFromIndex(items, sortedRangeEnd); Swap(items, sortedRangeEnd, nextIndex); sortedRangeEnd++; } } private int FindIndexOfSmallestFromIndex(T items, int sortedRangeEnd) { T currentSmallest = items; int currentSmallestIndex = sortedRangeEnd; for (int i = sortedRangeEnd + 1; i < items.Length; i++) { if (currentSmallest.CompareTo(items[i]) > 0) { currentSmallest = items[i]; currentSmallestIndex = i; } } return currentSmallestIndex; }

Сортировка слиянием

Разделяй и властвуй

До сих пор мы рассматривали линейные алгоритмы. Они используют мало дополнительной памяти, но имеют квадратичную сложность. На примере сортировки слиянием мы посмотрим на алгоритм типа «разделяй и властвуй» (divide and conquer) .

Алгоритмы этого типа работают, разделяя крупную задачу на более мелкие, решаемые проще. Мы пользуемся ими каждый день. К примеру, поиск в телефонной книге - один из примеров такого алгоритма.

Если вы хотите найти человека по фамилии Петров, вы не станете искать, начиная с буквы А и переворачивая по одной странице. Вы, скорее всего, откроете книгу где-то посередине. Если попадете на букву Т, перелистнете несколько страниц назад, возможно, слишком много - до буквы О. Тогда вы пойдете вперед. Таким образом, перелистывая туда и обратно все меньшее количество страниц, вы, в конце концов, найдете нужную.

Насколько эффективны эти алгоритмы?

Предположим, что в телефонной книге 1000 страниц. Если вы открываете ее на середине, вы отбрасываете 500 страниц, в которых нет искомого человека. Если вы не попали на нужную страницу, вы выбираете правую или левую сторону и снова оставляете половину доступных вариантов. Теперь вам надо просмотреть 250 страниц. Таким образом мы делим нашу задачу пополам снова и снова и можем найти человека в телефонной книге всего за 10 просмотров. Это составляет 1% от всего количества страниц, которые нам пришлось бы просмотреть при линейном поиске.

Сортировка слиянием

При сортировке слиянием мы разделяем массив пополам до тех пор, пока каждый участок не станет длиной в один элемент. Затем эти участки возвращаются на место (сливаются) в правильном порядке.

Давайте посмотрим на такой массив:

Разделим его пополам:

И будем делить каждую часть пополам, пока не останутся части с одним элементом:

Теперь, когда мы разделили массив на максимально короткие участки, мы сливаем их в правильном порядке.

Сначала мы получаем группы по два отсортированных элемента, потом «собираем» их в группы по четыре элемента и в конце собираем все вместе в отсортированный массив.

Для работы алгоритма мы должны реализовать следующие операции:

  1. Операцию для рекурсивного разделения массива на группы (метод Sort).
  2. Слияние в правильном порядке (метод Merge).

Стоит отметить, что в отличие от линейных алгоритмов сортировки, сортировка слиянием будет делить и склеивать массив вне зависимости от того, был он отсортирован изначально или нет. Поэтому, несмотря на то, что в худшем случае он отработает быстрее, чем линейный, в лучшем случае его производительность будет ниже, чем у линейного. Поэтому сортировка слиянием - не самое лучшее решение, когда надо отсортировать частично упорядченный массив.

Public void Sort(T items) { if (items.Length <= 1) { return; } int leftSize = items.Length / 2; int rightSize = items.Length - leftSize; T left = new T; T right = new T; Array.Copy(items, 0, left, 0, leftSize); Array.Copy(items, leftSize, right, 0, rightSize); Sort(left); Sort(right); Merge(items, left, right); } private void Merge(T items, T left, T right) { int leftIndex = 0; int rightIndex = 0; int targetIndex = 0; int remaining = left.Length + right.Length; while(remaining > 0) { if (leftIndex >= left.Length) { items = right; } else if (rightIndex >= right.Length) { items = left; } else if (left.CompareTo(right) < 0) { items = left; } else { items = right; } targetIndex++; remaining--; } }

Быстрая сортировка

Быстрая сортировка - это еще один алгоритм типа «разделяй и властвуй». Он работает, рекурсивно повторяя следующие шаги:

  1. Выбрать ключевой индекс и разделить по нему массив на две части. Это можно делать разными способами, но в данной статье мы используем случайное число.
  2. Переместить все элементы больше ключевого в правую часть массива, а все элементы меньше ключевого - в левую. Теперь ключевой элемент находится в правильной позиции - он больше любого элемента слева и меньше любого элемента справа.
  3. Повторяем первые два шага, пока массив не будет полностью отсортирован.

Давайте посмотрим на работу алгоритма на следующем массиве:

Сначала мы случайным образом выбираем ключевой элемент:

Int pivotIndex = _pivotRng.Next(left, right);

Теперь, когда мы знаем ключевой индекс (4), мы берем значение, находящееся по этому индексу (6), и переносим значения в массиве так, чтобы все числа больше или равные ключевому были в правой части, а все числа меньше ключевого - в левой. Обратите внимание, что в процессе переноса значений индекс ключевого элемента может измениться (мы увидим это вскоре).

Перемещение значений осуществляется методом partition .

На этом этапе мы знаем, что значение 6 находится на правильной позиции. Теперь мы повторяем этот процесс для правой и левой частей массива.

Мы рекурсивно вызываем метод quicksort на каждой из частей. Ключевым элементом в левой части становится пятерка. При перемещении значений она изменит свой индекс. Главное - помнить, что нам важно именно ключевое значение, а не его индекс.

Снова применяем быструю сортировку:

И еще раз:

У нас осталось одно неотсортированное значение, а, поскольку мы знаем, что все остальное уже отсортировано, алгоритм завершает работу.

Random _pivotRng = new Random(); public void Sort(T items) { quicksort(items, 0, items.Length - 1); } private void quicksort(T items, int left, int right) { if (left < right) { int pivotIndex = _pivotRng.Next(left, right); int newPivot = partition(items, left, right, pivotIndex); quicksort(items, left, newPivot - 1); quicksort(items, newPivot + 1, right); } } private int partition(T items, int left, int right, int pivotIndex) { T pivotValue = items; Swap(items, pivotIndex, right); int storeIndex = left; for (int i = left; i < right; i++) { if (items[i].CompareTo(pivotValue) < 0) { Swap(items, i, storeIndex); storeIndex += 1; } } Swap(items, storeIndex, right); return storeIndex; }

Заключение

На этом мы заканчиваем наш цикл статей по алгоритмам и структурам данных для начинающих. За это время мы рассмотрели связные списки, динамические массивы, двоичное дерево поиска и множества с примерами кода на C#.

Краткое описание алгоритма

  • выбрать элемент, называемый опорным.
  • сравнить все остальные элементы с опорным, на основании сравнения разбить множество на три - «меньшие опорного», «равные» и «большие», расположить их в порядке меньшие-равные-большие.
  • повторить рекурсивно для «меньших» и «больших».

Примечание: на практике обычно разделяют сортируемое множество не на три, а на две части: например, «меньшие опорного» и «равные и большие». Такой подход в общем случае оказывается эффективнее, так как для осуществления такого разделения достаточно одного прохода по сортируемому множеству и однократного обмена лишь некоторых выбранных элементов.

Алгоритм

Быстрая сортировка использует стратегию «разделяй и властвуй ». Шаги алгоритма таковы:

  1. Выбираем в массиве некоторый элемент, который будем называть опорным элементом . С точки зрения корректности алгоритма выбор опорного элемента безразличен. С точки зрения повышения эффективности алгоритма выбираться должна медиана , но без дополнительных сведений о сортируемых данных её обычно невозможно получить. Известные стратегии: выбирать постоянно один и тот же элемент, например, средний или последний по положению; выбирать элемент со случайно выбранным индексом.
  2. Операция разделения массива: реорганизуем массив таким образом, чтобы все элементы, меньшие или равные опорному элементу, оказались слева от него, а все элементы, большие опорного - справа от него. Обычный алгоритм операции:
    1. Два индекса - l и r, приравниваются к минимальному и максимальному индексу разделяемого массива соответственно.
    2. Вычисляется индекс опорного элемента m.
    3. Индекс l последовательно увеличивается до тех пор, пока l-й элемент не превысит опорный.
    4. Индекс r последовательно уменьшается до тех пор, пока r-й элемент не окажется меньше либо равен опорному.
    5. Если r = l - найдена середина массива - операция разделения закончена, оба индекса указывают на опорный элемент.
    6. Если l < r - найденную пару элементов нужно обменять местами и продолжить операцию разделения с тех значений l и r, которые были достигнуты. Следует учесть, что если какая-либо граница (l или r) дошла до опорного элемента, то при обмене значение m изменяется на r-й или l-й элемент соответственно.
  3. Рекурсивно упорядочиваем подмассивы, лежащие слева и справа от опорного элемента.
  4. Базой рекурсии являются наборы, состоящие из одного или двух элементов. Первый возвращается в исходном виде, во втором, при необходимости, сортировка сводится к перестановке двух элементов. Все такие отрезки уже упорядочены в процессе разделения.

Поскольку в каждой итерации (на каждом следующем уровне рекурсии) длина обрабатываемого отрезка массива уменьшается, по меньшей мере, на единицу, терминальная ветвь рекурсии будет достигнута всегда и обработка гарантированно завершится.

Интересно, что Хоар разработал этот метод применительно к машинному переводу : дело в том, что в то время словарь хранился на магнитной ленте , и если упорядочить все слова в тексте, их переводы можно получить за один прогон ленты. Алгоритм был придуман Хоаром во время его пребывания в Советском Союзе , где он обучался в Московском университете компьютерному переводу и занимался разработкой русско-английского разговорника (говорят, этот алгоритм был подслушан им у русских студентов).

//алгоритм на языке java public static void qSort(int A, int low, int high) { int i = low; int j = high; int x = A[ (low+ high) / 2 ] ; do { while (A[ i] < x) ++ i; while (A[ j] > x) -- j; if (i <= j) { int temp = A[ i] ; A[ i] = A[ j] ; A[ j] = temp; i++; j--; } } while (i < j) ; if (low < j) qSort(A, low, j) ; if (i < high) qSort(A, i, high) ; }

//алгоритм на языке pascal procedure qSort(var ar: array of real ; low, high: integer ) ; var i, j: integer ; m, wsp: real ; begin i: = low; j: = high; m: = ar[ (i+ j) div 2 ] ; repeat while (ar[ i] m) do j: = j- 1 ; if (i<= j) then begin wsp: = ar[ i] ; ar[ i] : = ar[ j] ; ar[ j] : = wsp; i: = i+ 1 ; j: = j- 1 ; end ; until (i > j) ; if (low

//алгоритм на языке Visual Basic //при первом вызове 2-ой аргумент должен быть равен 1 //3-ий аргумент должен быть равен числу элементов массива Sub qSort(ByVal ar() As double, ByVal low As Integer , ByVal high As Integer ) Dim i, j As Integer Dim m, wsp As double i = low j = high m = ar((i + j) \ 2 ) Do Until i > j Do While ar(i) < m i += 1 Loop Do While ar(j) > m j -= 1 Loop If (i <= j) Then wsp = ar(i) ar(i) = ar(j) ar(j) = wsp i += 1 j -= 1 End If Loop If (low < j) Then qSort(ar, low, j) If (i < high) Then qSort(ar, i, high) End Sub

Оценка эффективности

QuickSort является существенно улучшенным вариантом алгоритма сортировки с помощью прямого обмена (его варианты известны как «Пузырьковая сортировка » и «Шейкерная сортировка »), известного, в том числе, своей низкой эффективностью. Принципиальное отличие состоит в том, что после каждого прохода элементы делятся на две независимые группы. Любопытный факт: улучшение самого неэффективного прямого метода сортировки дало в результате эффективный улучшенный метод.

  • Лучший случай. Для этого алгоритма самый лучший случай - если в каждой итерации каждый из подмассивов делился бы на два равных по величине массива. В результате количество сравнений, делаемых быстрой сортировкой, было бы равно значению рекурсивного выражения C N = 2C N/2 +N, что в явном выражении дает примерно N lg N сравнений. Это дало бы наименьшее время сортировки.
  • Среднее. Даёт в среднем O(n log n ) обменов при упорядочении n элементов. В реальности именно такая ситуация обычно имеет место при случайном порядке элементов и выборе опорного элемента из середины массива либо случайно.
    На практике (в случае, когда обмены являются более затратной операцией, чем сравнения) быстрая сортировка значительно быстрее, чем другие алгоритмы с оценкой O(n lg n ), по причине того, что внутренний цикл алгоритма может быть эффективно реализован почти на любой архитектуре. 2C N/2 покрывает расходы по сортировке двух полученных подмассивов; N - это стоимость обработки каждого элемента, используя один или другой указатель. Известно также, что примерное значение этого выражения равно C N = N lg N.
  • Худший случай. Худшим случаем, очевидно, будет такой, при котором на каждом этапе массив будет разделяться на вырожденный подмассив из одного опорного элемента и на подмассив из всех остальных элементов. Такое может произойти, если в качестве опорного на каждом этапе будет выбран элемент либо наименьший, либо наибольший из всех обрабатываемых.
    Худший случай даёт O(n ²) обменов. Но количество обменов и, соответственно, время работы - это не самый большой его недостаток. Хуже то, что в таком случае глубина рекурсии при выполнении алгоритма достигнет n, что будет означать n-кратное сохранение адреса возврата и локальных переменных процедуры разделения массивов. Для больших значений n худший случай может привести к исчерпанию памяти во время работы алгоритма. Впрочем, на большинстве реальных данных можно найти решения, которые минимизируют вероятность того, что понадобится квадратичное время.

Улучшения

  • При выборе опорного элемента из данного диапазона случайным образом худший случай становится очень маловероятным и ожидаемое время выполнения алгоритма сортировки - O(n lg n ).
  • Выбирать опорным элементом средний из трех (первого, среднего и последнего элементов). Такой выбор также направлен против худшего случая.
  • Во избежание достижения опасной глубины рекурсии в худшем случае (или при приближении к нему) возможна модификация алгоритма, устраняющая одну ветвь рекурсии: вместо того, чтобы после разделения массива вызывать рекурсивно процедуру разделения для обоих найденных подмассивов, рекурсивный вызов делается только для меньшего подмассива, а больший обрабатывается в цикле в пределах этого же вызова процедуры . С точки зрения эффективности в среднем случае разницы практически нет: накладные расходы на дополнительный рекурсивный вызов и на организацию сравнения длин подмассивов и цикла - примерно одного порядка. Зато глубина рекурсии ни при каких обстоятельствах не превысит log 2 n, а в худшем случае вырожденного разделения она вообще будет не более 2 - вся обработка пройдёт в цикле первого уровня рекурсии.
  • Разбивать массив не на две, а на три части (см. Dual Pivot Quicksort).

Достоинства и недостатки

Достоинства:

Недостатки:

Примечания

Литература

  • Ананий В. Левитин Глава 4. Метод декомпозиции: Быстрая сортировка // Алгоритмы: введение в разработку и анализ = Introduction to The Design and Analysis of Algorithms. - М .: «Вильямс», 2006. - С. 174-179. - ISBN 5-8459-0987-2
  • Кормен, Т. , Лейзерсон, Ч. , Ривест, Р. , Штайн, К. Глава 7. Быстрая сортировка // Алгоритмы: построение и анализ = Introduction to Algorithms / Под ред. И. В. Красикова. - 2-е изд. - М .: Вильямс, 2005. - С. 198-219. - ISBN 5-8459-0857-4
O(n ) вспомогательных
O(log n ) вспомогательных (Седжвик 1978)

Быстрая сортировка , сортировка Хоара (англ. quicksort ), часто называемая qsort (по имени в стандартной библиотеке языка Си) - широко известный алгоритм сортировки , разработанный английским информатиком Чарльзом Хоаром во время его работы в МГУ в 1960 году .

algorithm quicksort(A, lo, hi) is if lo < hi then p:= partition(A, lo, hi) quicksort(A, lo, p – 1) quicksort(A, p + 1, hi) algorithm partition(A, lo, hi) is pivot:= A i:= lo - 1 for j:= lo to hi - 1 do if A[j] ≤ pivot then i:= i + 1 swap A[i] with A[j] swap A with A return i + 1

Сортировка всего массива может быть выполнена с помощью выполнения quicksort(A, 1, length(A)) .

Разбиение Хоара

Данная схема использует два индекса (один в начале массива, другой в конце), которые приближаются друг к другу, пока не найдётся пара элементов, где один больше опорного и расположен перед ним, а второй меньше и расположен после. Эти элементы меняются местами. Обмен происходит до тех пор, пока индексы не пересекутся. Алгоритм возвращает последний индекс. . Схема Хоара эффективнее схемы Ломуто, так как происходит в среднем в три раза меньше обменов (swap) элементов, и разбиение эффективнее, даже когда все элементы равны. Подобно схеме Ломуто, данная схема также показывает эффективность в O (n 2) , когда входной массив уже отсортирован. Сортировка с использованием данной схемы нестабильна. Следует заметить, что конечная позиция опорного элемента необязательно совпадает с возвращённым индексом. Псевдокод :

algorithm quicksort(A, lo, hi) is if lo < hi then p:= partition(A, lo, hi) quicksort(A, lo, p) quicksort(A, p + 1, hi) algorithm partition(A, lo, hi) is pivot:= A i:= lo - 1 j:= hi + 1 loop forever do i:= i + 1 while A[i] < pivot do j:= j - 1 while A[j] > pivot if i >= j then return j swap A[i] with A[j]

Повторяющиеся элементы

Для улучшения производительности при большом количестве одинаковых элементов в массиве может быть применена процедура разбиения массива на три группы: элементы меньшие опорного, равные ему и больше него. (Бентли и Макилрой называют это «толстым разбиением». Данное разбиение используется в функции qsort в седьмой версии Unix . ). Псевдокод:

algorithm quicksort(A, lo, hi) is if lo < hi then p:= pivot(A, lo, hi) left, right:= partition(A, p, lo, hi) // возвращается два значения quicksort(A, lo, left) quicksort(A, right, hi)

Оценка сложности алгоритма

Ясно, что операция разделения массива на две части относительно опорного элемента занимает время . Поскольку все операции разделения, проделываемые на одной глубине рекурсии, обрабатывают разные части исходного массива, размер которого постоянен, суммарно на каждом уровне рекурсии потребуется также O (n) {\displaystyle O(n)} операций. Следовательно, общая сложность алгоритма определяется лишь количеством разделений, то есть глубиной рекурсии. Глубина рекурсии, в свою очередь, зависит от сочетания входных данных и способа определения опорного элемента.

Лучший случай. В наиболее сбалансированном варианте при каждой операции разделения массив делится на две одинаковые (плюс-минус один элемент) части, следовательно, максимальная глубина рекурсии, при которой размеры обрабатываемых подмассивов достигнут 1, составит log 2 ⁡ n {\displaystyle \log _{2}n} . В результате количество сравнений, совершаемых быстрой сортировкой, было бы равно значению рекурсивного выражения C n = 2 ⋅ C n / 2 + n {\displaystyle C_{n}=2\cdot C_{n/2}+n} , что даёт общую сложность алгоритма O (n ⋅ log 2 ⁡ n) {\displaystyle O(n\cdot \log _{2}n)} . Среднее. Среднюю сложность при случайном распределении входных данных можно оценить лишь вероятностно. Прежде всего необходимо заметить, что в действительности необязательно, чтобы опорный элемент всякий раз делил массив на две одинаковых части. Например, если на каждом этапе будет происходить разделение на массивы длиной 75 % и 25 % от исходного, глубина рекурсии будет равна , а это по-прежнему даёт сложность . Вообще, при любом фиксированном соотношении между левой и правой частями разделения сложность алгоритма будет той же, только с разными константами. Будем считать «удачным» разделением такое, при котором опорный элемент окажется среди центральных 50 % элементов разделяемой части массива; ясно, вероятность удачи при случайном распределении элементов составляет 0,5. При удачном разделении размеры выделенных подмассивов составят не менее 25 % и не более 75 % от исходного. Поскольку каждый выделенный подмассив также будет иметь случайное распределение, все эти рассуждения применимы к любому этапу сортировки и любому исходному фрагменту массива. Удачное разделение даёт глубину рекурсии не более log 4 / 3 ⁡ n {\displaystyle \log _{4/3}n} . Поскольку вероятность удачи равна 0,5, для получения k {\displaystyle k} удачных разделений в среднем потребуется 2 ⋅ k {\displaystyle 2\cdot k} рекурсивных вызовов, чтобы опорный элемент k раз оказался среди центральных 50 % массива. Применяя эти соображения, можно заключить, что в среднем глубина рекурсии не превысит 2 ⋅ log 4 / 3 ⁡ n {\displaystyle 2\cdot \log _{4/3}n} , что равно O (log ⁡ n) {\displaystyle O(\log n)} А поскольку на каждом уровне рекурсии по-прежнему выполняется не более O (n) {\displaystyle O(n)} операций, средняя сложность составит O (n log ⁡ n) {\displaystyle O(n\log n)} . Худший случай. В самом несбалансированном варианте каждое разделение даёт два подмассива размерами 1 и , то есть при каждом рекурсивном вызове больший массив будет на 1 короче, чем в предыдущий раз. Такое может произойти, если в качестве опорного на каждом этапе будет выбран элемент либо наименьший, либо наибольший из всех обрабатываемых. При простейшем выборе опорного элемента - первого или последнего в массиве, - такой эффект даст уже отсортированный (в прямом или обратном порядке) массив, для среднего или любого другого фиксированного элемента «массив худшего случая» также может быть специально подобран. В этом случае потребуется n − 1 {\displaystyle n-1} операций разделения, а общее время работы составит ∑ i = 0 n (n − i) = O (n 2) {\displaystyle \textstyle \sum _{i=0}^{n}(n-i)=O(n^{2})} операций, то есть сортировка будет выполняться за квадратичное время. Но количество обменов и, соответственно, время работы - это не самый большой его недостаток. Хуже то, что в таком случае глубина рекурсии при выполнении алгоритма достигнет n, что будет означать n-кратное сохранение адреса возврата и локальных переменных процедуры разделения массивов. Для больших значений n худший случай может привести к исчерпанию памяти (переполнению стека) во время работы программы.

Достоинства и недостатки

Достоинства:

Недостатки:

Улучшения

Улучшения алгоритма направлены, в основном, на устранение или смягчение вышеупомянутых недостатков, вследствие чего все их можно разделить на три группы: придание алгоритму устойчивости, устранение деградации производительности специальным выбором опорного элемента, и защита от переполнения стека вызовов из-за большой глубины рекурсии при неудачных входных данных.

  • Проблема неустойчивости решается путём расширения ключа исходным индексом элемента в массиве. В случае равенства основных ключей сравнение производится по индексу, исключая, таким образом, возможность изменения взаимного положения равных элементов. Эта модификация не бесплатна - она требует дополнительно O(n) памяти и одного полного прохода по массиву для сохранения исходных индексов.
  • Деградация по скорости в случае неудачного набора входных данных решается по двум разным направлениям: снижение вероятности возникновения худшего случая путём специального выбора опорного элемента и применение различных технических приёмов, обеспечивающих устойчивую работу на неудачных входных данных. Для первого направления:
  • Выбор среднего элемента. Устраняет деградацию для предварительно отсортированных данных, но оставляет возможность случайного появления или намеренного подбора «плохого» массива.
  • Выбор медианы из трёх элементов: первого, среднего и последнего. Снижает вероятность возникновения худшего случая, по сравнению с выбором среднего элемента.
  • Случайный выбор. Вероятность случайного возникновения худшего случая становится исчезающе малой, а намеренный подбор - практически неосуществимым. Ожидаемое время выполнения алгоритма сортировки составляет O(n lg n ).
Недостаток всех усложнённых методов выбора опорного элемента - дополнительные накладные расходы; впрочем, они не так велики.
  • Во избежание отказа программы из-за большой глубины рекурсии могут применяться следующие методы:

Было подсчитано, что до четверти времени централизованных компьютеров уделяется сортировке данных. Это потому, что намного легче найти значение в массиве, который был заранее отсортирован. В противном случае поиск немного походит на поиск иголки в стоге сена.

Есть программисты, которые всё рабочее время проводят в изучении и внедрении алгоритмов сортировки. Это потому, что подавляющее большинство программ в бизнесе включает в себя управление базами данных. Люди ищут информацию в базах данных всё время. Это означает, что поисковые алгоритмы очень востребованы.

Но есть одно "но". Поисковые алгоритмы работают намного быстрее с базами данных, которые уже отсортированы. В этом случае требуется только линейный поиск.

В то время как компьютеры находятся без пользователей в некоторые моменты времени, алгоритмы сортировки продолжают работать с базами данных. Снова приходят пользователи, осуществляющие поиск, а база данных уже отсортирована, исходя из той или иной цели поиска.

В этой статье приведены примеры реализации стандартных алгоритмов сортировки.

Сортировка выбором (Selection sort)

Для того, чтобы отсортировать массив в порядке возрастания, следует на каждой итерации найти элемент с наибольшим значением. С ним нужно поменять местами последний элемент. Следующий элемент с наибольшим значением становится уже на предпоследнее место. Так должно происходить, пока элементы, находящиеся на первых местах в массивe, не окажутся в надлежащем порядке.

Код C++

void SortAlgo::selectionSort(int data, int lenD) { int j = 0; int tmp = 0; for (int i=0; idata[k]){ j = k; } } tmp = data[i]; data[i] = data[j]; data[j] = tmp; } }

Пузырьковая сортировка (Bubble sort)

При пузырьковой сортировке сравниваются соседние элементы и меняются местами, если следующий элемент меньше предыдущего. Требуется несколько проходов по данным. Во время первого прохода сраваются первые два элемента в массиве. Если они не в порядке, они меняются местами и затем сравнивается элементы в следующей паре. При том же условии они так же меняются местами. Таким образом сортировка происходит в каждом цикле пока не будет достигнут конец массива.

Код C++

void SortAlgo::bubbleSort(int data, int lenD) { int tmp = 0; for (int i = 0;i=(i+1);j--){ if (data[j]

Сортировка вставками (Insertion sort)

При сортировке вставками массив разбивается на две области: упорядоченную и и неупорядоченную. Изначально весь массив является неупорядоченной областью. При первом проходе первый элемент из неупорядоченной области изымается и помещается в правильном положении в упорядоченной области.

На каждом проходе размер упорядоченной области возрастает на 1, а размер неупорядоченной области сокращается на 1.

Основной цикл работает в интервале от 1 до N-1. На j-й итерации элемент [i] вставлен в правильное положение в упорядоченной области. Это сделано путем сдвига всех элементов упорядоченной области, которые больше, чем [i], на одну позицию вправо. [i] вставляется в интервал между теми элементами, которые меньше [i], и теми, которые больше [i].

Код C++

void SortAlgo::insertionSort(int data, int lenD) { int key = 0; int i = 0; for (int j = 1;j=0 && data[i]>key){ data = data[i]; i = i-1; data=key; } } }

Сортировка слиянием (Merge sort)

Код C++

void SortAlgo::mergeSort(int data, int lenD) { if (lenD>1){ int middle = lenD/2; int rem = lenD-middle; int * L = new int ; int * R = new int ; for (int i=0;i

Быстрая сортировка (Quick sort)

Быстрая сортировка использует алгоритм "разделяй и властвуй". Она начинается с разбиения исходного массива на две области. Эти части находятся слева и справа от отмеченного элемента, называемого опорным. В конце процесса одна часть будет содержать элементы меньшие, чем опорный, а другая часть будет содержать элементы больше опорного.

Код C++

void SortAlgo::quickSort(int * data, int const len) { int const lenD = len; int pivot = 0; int ind = lenD/2; int i,j = 0,k = 0; if (lenD>1){ int * L = new int ; int * R = new int ; pivot = data; for (i=0;i

Последние материалы сайта